姓名 李為民
性別   男 (Male) 
職稱   教授 (Professor)
最高學歷   國立台灣大學 機械博士 
專長 

1. 機電整合

2. 氣液壓

3. 振動與結構動力

專業證照

1. 機電整合乙級

2. 氣壓乙級

3. 機電整合乙丙級技能檢定監評人員

經歷    1.中山科學研究院副工程師

 2.中華技術學院講師

 3.中華科技大學副教授

E-Mail address  wmlee@cc.cust.edu.tw
實驗室 機電整合實驗室
教學資源 機電整合


  (A)期刊論文

  1. W.M. Lee, J.T Chen, 2020, Dynamic Green's functions for multiple elliptical inclusions with imperfect interfaces, Mechanics Research Communications, Vol. 108, 103567. (supported by MOST 107-2221-E-157-001 -) (SCI)

  2. W.M. Lee, J.T. Chen, W.M. Young, 2018, Dynamic Green's functions for multiple circular inclusions with imperfect interfaces using the collocation multipole method, Engineering Analysis with Boundary Elements, Vol. 94, pp.113–121. (supported by MOST 105-2221-E-157 -002-) (SCI)

  3. W.M. Lee, J.T. Chen,  2016, Computation of scattering of a plane wave from multiple prolate spheroids using collocation multipole method, Journal of the Acoustical Society of America, Vol. 140, Issue 4, pp. 2235-2246. (supported by MOST 103-2221-E-157 -002-) (SCI)

  4. W.M. Lee, 2015, Three-dimensional acoustic scattering by multiple spheres using collocation multipole method, International Journal of Solids and Structures, Vol. 63, pp. 39-49. (supported by NSC 102-2221-E-157 -002-) (SCI)

  5. W.M. Lee, J.T. Chen, 2014, The collocation multipole method for solving multiple scattering problems with circular boundaries, Engineering Analysis with Boundary Elements, Vol. 48, pp.102–112. (supported by NSC 102-2221-E-157 -002-) (SCI )

  6. W.M. Lee, 2014, Eigenproblems of two-dimensional acoustic cavities with smoothly varying boundaries by using the generalized multipole method, Meccanica, Vol. 49, Issue 7, pp. 1617-1628.  (supported by NSC 101-2221-E-157 -005-) (SCI )

  7. W.M. Lee, 2014, Acoustic eigenproblems of elliptical cylindrical cavities with multiple elliptical cylinders by using the collocation multipole method, International Journal of Mechanical Sciences, Vol. 78, Issue 1, pp. 203-214. (supported by NSC 101-2221-E-157 -005-) (SCI )

  8. W.M. Lee, 2012, Acoustic scattering by multiple elliptical cylinders using collocation multipole method,  Journal of Computational Physics, Vol. 231, Issue 14, pp. 4597-4612. (supported by NSC 100-2221-E-157 -003-) (SCI)

  9. W.M. Lee, 2011, Natural mode analysis of an acoustic cavity with multiple elliptical boundaries by using the collocation multipole method, Journal of Sound and Vibration, Vol. 330, Issue 20, pp. 4915-4929. (supported by NSC 99-2221-E-157-003-) (SCI )

  10. W.M. Lee, J.T. Chen, 2011, Scattering of flexural wave in a thin plate with multiple circular inclusions by using the multipole method, International Journal of Mechanical Sciences, Vol. 53, Issue 8, pp. 617-627. (supported by NSC 98-2221-E-157 -002) (SCI )

  11. W.M. Lee, J.T. Chen, 2011, Free vibration analysis of a circular plate with multiple circular holes by using addition theorem and indirect BIEM, Journal of Applied Mechanics-Transactions of the ASME, Vol. 78, Issue 1, pp. 011015-1 - 011015-10. (SCI )

  12. W.M. Lee, J.T. Chen, 2010, Eigensolutions of a circular flexural plate with multiple circular holes by using the direct BIEM and addition theorem, Engineering Analysis with Boundary Elements, Vol. 34, Issue 12, pp.1064–1071. (SCI)

  13. W.M. Lee, J.T. Chen, 2010, Scattering of flexural wave in thin plate with multiple circular holes by using the multipole Trefftz method, International Journal of Solids and Structures, vol.47, Issue 9, pp. 1118-1129. (supported by NSC 98-2221-E-157 -002) (SCI)

  14. J.T. Chen, S.K. Kao, W.M. Lee, Y.T. Lee, 2010, Eigensolutions of the Helmholtz equation for a multiply-connected domain with circular boundaries by using the multipole Trefftz method, Engineering Analysis with Boundary Elements, Vol. 34, Issue 5, pp. 463–470. (SCI)

  15. W.M. Lee, J.T. Chen, 2010, Scattering of flexural wave in a thin plate with multiple circular inclusions by using null-field integral equation approach, Journal of Sound and Vibration, Vol. 329, Issue 8, pp.1042-1061. (supported by NSC 98-2221-E-157 -002) (SCI)

  16. W.M. Lee, J.T. Chen, 2009, Free vibration analysis of a circular plate with multiple circular holes by using the multipole Trefftz method, Computer Modeling in Engineering & Science, Vol. 50, Issue 2, pp. 141-159. (SCI)

  17. I.L. Chen, J.T. Chen, W.M. Lee, S.K. Kao, 2009, Computer assisted proof of spurious eigensolutions for annular and eccentric membranes, Journal of Marine Science and Technology, Vol. 17, Issue 3, pp. 203-215. (SCI)

  18. J.T. Chen, W.M. Lee, H.Z. Liao, 2009, Discussion: Isotropic Clamped-Free Thin Annular Circular Plate Subjected to a Concentrated Load, Journal of Applied Mechanics-Transactions of the ASME, Vol. 76, Issue 1, pp. 015501-1- 015501 -4. (SCI)

  19. J.T. Chen, H.Z. Liao, W.M. Lee, 2009, An analytical approach for the green’s functions of Biharmonic problems with circular and annular domains, Journal of Mechanics, Vol. 25, Issue 1, pp. 59-74. (SCI)

  20. W.M. Lee, J.T. Chen, 2008, Scattering of flexural wave in thin plate with multiple holes by using the null-field integral equation approach, Computer Modeling in Engineering & Science, Vol. 37, Issue 3, pp. 243-273. (supported by NSC 97-2221-E-157 -006) (SCI)

  21. W.M. Lee, J.T. Chen, 2008, Null-field integral equation approach for free vibration analysis of circular plates with multiple circular holes, Computational Mechanics, Vol. 42, No.5, pp.733–747. (SCI)

  22. W.M. Lee, J.T. Chen, 2008, Analytical study and numerical experiments of true and spurious eigensolutions of free vibration of circular plates using real-part BIEM, Engineering Analysis with Boundary Elements, Vol. 32, Issue 5, pp. 368–387. (SCI)

  23. W.M. Lee, Y.S. Liao, 2007, Adaptive control of the WEDM process using a self-tuning fuzzy logic algorithm with grey prediction, International Journal of Advanced Manufacturing Technology, Vol. 34, Issue 5-6, pp. 527-537. (SCI)

  24. W.M. Lee, J.T. Chen, Y.T. Lee, 2007, Free vibration analysis of circular plates with multiple circular holes using indirect BIEMs, Journal of Sound and Vibration, Vol. 304, Issues 3-5, pp.811-830. (SCI)

  25. W.M. Lee, Y.S. Liao, 2003, Self-tuning fuzzy control with grey prediction for wire rupture prevention in WEDM, International Journal of Advanced Manufacturing Technology, Vol. 22, Issue 7-8, pp. 481-490. (SCI)

(B)研討會論文

  1. W.M. Lee, 2019, Dynamic Green's functions for multiple elliptical inclusions with imperfect interfaces using the collocation multipole method, International Conference on Computational & Experimental Engineering and Sciences 2019, Tokyo, Japan, Mar 25-28. (supported by MOST 107-2221-E-157-001 -)

  2. W.M. Lee, 2015, Acoustic scattering by multiple spheroids using collocation multipole method, The 6th International Conference on Computational Methods (ICCM2015), Auckland, New Zealand, Jul 14-17.  (supported by MOST 103- 2221-E-157-002-)

  3. W.M. Lee, 2014, The collocation multipole method for solving acoustic scattering problems with multiple spheres, International Conference on Computational & Experimental Engineering and Sciences 2014, Changwon, Korea, Jun 12-17.  (supported by NSC 102-2221-E-157 -002-)

  4. W.M. Lee, 2013, Generalized multipole method for solving multiple scattering problems with circular boundaries, International Conference on Computational & Experimental Engineering and Sciences 2013, Seattle, USA, May 24-28.  (supported by NSC 101-2221-E-157 -005-)

  5.  W.M. Lee, 2012, Natural mode analysis of elliptical cylindrical cavities with multiple elliptical cylinders by using the collocation multipole method, The 23rd International Congress of Theoretical and Applied Mechanics 19-24 August 2012, Beijing, China. (supported by NSC 100-2221-E-157 -003-).

  6. W.M. Lee, J.S. He, J.S. Guo, 2011, The collocation multipole method for acoustic problems with elliptical boundaries, International Conference on Computational & Experimental Engineering and Sciences 2011, Nanjing, China, Apr. 18-21.(supported by NSC 99-2221-E-157-003-)

  7. W.M. Lee, 2011, The collocation Trefftz method for acoustic scattering by multiple elliptical cylinders, Joint International Workshop on Trefftz Method VI and Method of Fundamental Solution II, Kaohsiung, Taiwan (March 15-18). (supported by NSC 99-2221-E-157-003-)

  8. W.M. Lee, J.S. He, J.S. Guo, 2010, Natural mode analysis of two-dimensional acoustic cavities by using the generalized multipole method, 中國機械工程學會第二十七屆全國學術研討會,台北市. (supported by NSC 99-2221-E-157-003-)

  9. W.M. Lee, J.S. He, J.S. Guo, 2010, Natural mode analysis of an acoustic cavity with multiple elliptical boundaries by using the multipole method, 中華民國力學學會第三十四屆全國力學會議,雲林斗六. (supported by NSC 99-2221-E-157-003-)

  10. W.M. Lee, J.T. Chen, C.F. Zhu, Y.C. Lin, 2009, Scattering of flexural wave in a thin plate with multiple circular holes by using the multipole Trefftz method, 2009中華民國航空學會聯合學術研討會,台北. (supported by NSC 98-2221-E-157 -002)

  11. W.M. Lee, J.T. Chen, H.H. Hsu, 2009, Scattering of flexural wave in a thin plate with multiple circular inclusions by using the multipole Trefftz method, 中華民國力學學會第三十三屆全國力學會議,苗栗. (supported by NSC 98-2221-E-157 -002)

  12. W.M. Lee, J.T. Chen, September 2009, Free vibration analysis of a circular plate with multiple circular holes by using addition theorem and direct BIEM, 31st International Conference on BEM/MRM 31 in New Forest, UK, Sep. 2-4. (supported by NSC 98-2221-E-157 -002)

  13. W.M. Lee, J.T. Chen, R.E. Jiang, 2009, Scattering of flexural wave in a thin plate with multiple inclusions by using the null-field integral equation approach, 第十七屆中華民國振動與噪音工程學術研討會,台北.

  14. W.M. Lee, J.T. Chen, Y.K. Shiu, C.L. Chien, October 2008, Null-field integral equation method for plate problems with circular boundaries, ICCES Special Symposium on Meshless & Other Novel Computational Methods in Suzhou, China, Oct. 13-17. (supported by NSC 97-2221-E-157 -006)

  15. J.T. Chen, Y.T. Lee, W.M. Lee, I.L. Chen, 2008, Null-field integral equation approach for structure problems with circular boundaries, 中華民國第九屆結構工程研討會,高雄.

  16. W.M. Lee, J.T. Chen, C.L. Chien, Y. C. Wang, 2008, Scattering of flexural wave in thin plate with multiple holes by using the null-field integral equation method, 第十六屆中華民國振動與噪音工程學術研討會,台北.

  17. I.L. Chen, J.T. Chen, W.M. Lee, 2007, On spurious eigenvalues of doubly -connected membrane,中華民國力學學會第三十一屆全國力學會議,高雄.

  18. W.M. Lee, J.T. Chen, Y.K. Shiu, W.T. Tao, J.C. Kao, 2007, Null-field integral equation approach for free vibration analysis of circular plates with multiple circular holes, 第十五屆中華民國振動與噪音工程學術研討會,陽明山.

  19. W.M. Lee, Y.T. Lee, J.T. Chen, 2006, Free vibration analysis of circular plates with multiple circular holes using indirect BIEMs, 第十四屆中華民國振動與噪音工程學術研討會,宜蘭.

  20. W.M. Lee, H.P. Huang, 1996, Stabilization of nonholonomic mobile robots by a GA-based fuzzy sliding mode control, Proceedings of 1996 Asian Fuzzy Systems Symposium, pp.388-393.

(C)研究計畫

年度

計畫編號

主持人

計畫名稱

核定金額

起訖日期

108

MOST 108-2221-E-157-002 -MY2

李為民

配置多極法求解三維無限聲場含多圓球/橢圓球具Robin邊界條件之動力格林函數

1,200,000

108/08/01110/07/31

107

MOST 107-2221-E-157-001 -

李為民

配置多極法求解含多橢圓形置入物具非理想界面之動力格林函數

556,000

107/08/01108/07/31

105

MOST 105-2221-E-157-002 -

李為民

配置多極法求解含多置入物具非理想界面之動力格林函數

434,000

105/08/01106/07/31

103

MOST 103-2221-E-157 -002 -

李為民

配置多極法求解多橢圓球之聲場散射問題

514,000

103/08/01104/07/31

102

NSC 102-2221-E-157 -002 -

李為民

配置多極法求解聲場幅射與散射問題

540,000

102/08/01103/07/31

101

NSC 101-2221-E-157 -005 -

李為民

廣義多極法求解幅射與散射問題

535,000

101/08/01102/07/31

100

NSC 100-2221-E-157 -003 - 

李為民

配置多極法求解二維內域及外域聲場與薄板問題

422,000

100/08/01101/07/31

99

NSC 99-2221-E-157 -003 -

李為民

邊界法求解含多圓形(橢圓形)孔洞或置入物無限薄板彎曲波多重散射

491,000

99/08/01100/07/31

98

NSC 98-2221-E-157 -002 -

李為民

邊界積分方程求解含多圓孔或圓形夾雜薄板彎曲波散射研究

479,000

98/08/0199/07/31

97

NSC 97-2221-E-157 -006 - 

李為民

零場積分方程求解薄板彎曲波散射研究

502,000

97/08/0198/07/31

 

(D) 專書及專書論文

1.  J.T. Chen, Y.T. Lee, W.M. Lee, 2009, A semi-analytical approach for boundary value problems with circular boundaries, in the Chapter 3 of book of Recent Advances in Boundary Methods: A Volume to Honor Professor Dimitri Beskos, edited by G. D. Manolis and D. Polyzos, Springer-Verlag.

(E) 技術報告及其他

  1. 李為民, 2020配置多極法求解三維無限聲場含多圓球/橢圓球具Robin邊界條件之動力格林函數,科技部專題研究 期中報告,MOST 108- 2221-E-157-002-MY2

  2. 李為民, 2019, 配置多極法求解含多橢圓形置入物具非理想界面之動力格林函數,科技部專題研究報告,MOST 107- 2221-E-157-001-

  3. 李為民, 2017, 配置多極法求解含多置入物具非理想界面之動力格林函數,科技部專題研究報告,MOST 105- 2221-E-157-002-

  4. 李為民, 2015,配置多極法求解多橢圓球之聲場散射問題,科技部專題研究報告,MOST 103- 2221-E-157-002-

  5. 李為民, 2014,配置多極法求解聲場幅射與散射問題,國科會專題研究報告,NSC 102-2221-E-157 -002 -

  6. 李為民, 2013,廣義多極法求解幅射與散射問題,國科會專題研究報告,NSC 101-2221-E-157 -005 -

  7. 李為民, 2012,配置多極法求解二維內域及外域聲場與薄板問題,國科會專題研究報告,NSC 100-2221-E-157 -003 -

  8. 李為民, 2011,邊界法求解含多圓形(橢圓形)孔洞或置入物無限薄板彎曲波多重散射,國科會專題研究報告,NSC 99-2221-E-157 -003 -

  9. 李為民, 2010,邊界積分方程求解含多圓孔或圓形夾雜薄板彎曲波散射研究,國科會專題研究報告,NSC 98-2221-E-157-002-

  10. 李為民, 2009,零場積分方程求解薄板彎曲波散射研究,國科會專題研究報告,NSC 97-2221-E-157-006-

  11. 李為民, 2006,雷射技術用於軟性電路板切割之應用,國科會專題研究報告,NSC 94-2622-E-157-004-CC3

  12. 李為民, 2003,針型連接器彎曲成形之回彈研究,國科會專題研究報告,NSC 91-2622-E-157-002-CC3


    [首頁]