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Abstract

This paper presents the three-dimensional nonlinear finite element model depicting the global behavior for RC structure strengthened by steel plates up to failure. In addition to the consideration of nonlinear behavior and cracking of concrete, the model involves special interface element to capture not only the shear and normal stress concentration, but also can judge separation if the peak shear and normal stress are exceeded. The internal steel bar using truss element and the steel plate using deformation theory of plastic has been confirmed by comparison of finite element solution with plastic theory. The finite element solution reveals close correlation to experimental data available for RC structures strengthened by steel plates.
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1 Introduction

RC structure must be repaired or strengthened when the behavior of RC structures was found to be inadequate. The inadequacy may be due to inferior materials, design, or constructional fault. Deteriorated RC structures need to be repaired to extend their useful service life. Strengthening and repair of RC members by steel plates externally bonded to the tension face of the members is one technique that has been studied by many investigators [1,2], and many structures have been successfully strengthened in flexure using this technique [3,4]. The successful strengthened structure must remain full composite action until failure in ductile manner. The peak shear and normal stress will be developed at plate curtailment under the loading, the plate separation fail immediately if the peak shear and normal stress was exceeded the strength of interface. 

A two-dimensional nonlinear finite element analysis of RC beam strengthened by plates has studied to focus on the normal and shear stress concentrations at the plate cut-off [5,6]. In order to provide extra shear or torsion for deficient RC beams, it usually attaches lateral steel plates. But it cannot use two-dimensional analysis in these problems. Another, the external plate sometimes attaches in lateral side, for instance, the actual cap-beam built in Taipei Muja Mass Rapid transport strengthen in two sides and bottom [7]. For this purpose, the nonlinear finite element analysis must extend three-dimensional analysis. At present, a few existing three-dimensional nonlinear models analytical or numerical have attempted to study the RC structures strengthened with steel plate.
In this present study, the nonlinear finite element model depicting the global behavior of the externally reinforced RC structures up to failure is developed. The model involves special interface element to capture the characteristics of the interface between the concrete and external plates, and the model was used twenty nodes element for concrete component as well as the external steel plate. The internal flexural and shear reinforcement is represented by two nodes truss element.

2 Finite Element Model

Concrete and external plates are presented by twenty nodes isoparameter finite element as shown in Fig. 1. Numerical integration for any element was carried out using Gauss-integration technique over 
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 sampling points. Each iteration of any loading level, the material matrix at every sampling point of the concrete and external plates are updated and modified to take into account the material nonlinear as described in the next section. The internal steel including the main tensile and compressive steel as well as stirrups was modeled using two nodes truss element. Concrete / glue / plate interface element model is using sixteen nodes thin interface element. The sixteen nodes thin interface element was derived from 2D (six-node thin interface element by Ziraba [6]) extend to 3D by author. The formulation of a new thin interface three-dimensional element that has been developed as the failure mechanisms of RC beam strengthened with external steel plate on their lateral or tensile side.

2.1 Three dimensional interface element model

Since the glue thickness is much smaller than the other components of the plate bonded beam, a sixteen nodes thin interface element, as shown in Fig. 2, was deemed sufficient to represent the interface element. By defining equivalent pseudo node from 
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 to 
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 as show in Fig. 2, isoparametric formulation with parabolic shape functions is adopted. A 
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 point Gaussian integration rule was used for this element. The strain vector in three-dimensional element with not geometrical nonlinear is written as
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where

u, v, and w are the element displacement field in the local x, y and z component, respectively. The displacement u, v and w are each interpolated from equivalent pseudo eight nodal values by interpolation using shape function 
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where 
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 are the shape functions at the eight equivalent nodal points from 
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, and 
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 are the average nodal displacement along line 
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. Thus, equation (1) can be written in term of the element nodal displacement 
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 along the x-direction may be approximated as
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Similarly, the strain 
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 along the y-direction may be approximated as
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The strain 
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 along the z-direction may be approximated as
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where t is the element thickness. The shear strain 
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 is approximated as
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The shear strain 
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 is approximated as
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The shear strain 
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 is approximated as
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Substituting equation from (5) to (10) into equation (1) results in
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where 
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 is the strain matrix form as
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and
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The stiffness 
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 in local coordinate is evaluated as
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The 
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 Gauss point integration rule is used and equation becomes
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The element stiffness matrix in local coordinate has to be transformed to global coordinate system. 

3 Material model

3.1 Material model for interface

The interface material is modeled by a linear-elastic-fracture relationship. Prior to the cracking of the interface, the material is assumed to be isotropic. The response of the interface under tensile and shear stresses is assumed linear before fracture occurring. Due to its special thin geometry, the interface element assume crack only along the glue surface or perpendicular to it, as shown in Fig. 3. Cracks perpendicular or along the glue surface will occur as soon as the corresponding normal stress reaches the tensile strength of the interface. After cracking, the stress as well as the elasticity modulus in the corresponding direction is set to zero. In numerical, it set to 0.001Eg. The Poisson’s ratio was neglected. The shear modulus reduces to 0.25 times of uncracked value [6]. The interface could also crack parallel the glue surface under combined shear and normal stresses, which use to follow a Mohr-Coulomb with maximum tensile stress criterion given by
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Where, c cohesion for an interface ranges from 49 kg/cm2 to 97 kg/cm2 with 
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 for room temperature. The wide range of cohesion can be attributed to the variation in surface preparation and properties of the adhesive and concrete. If the normal stress perpendicular to the glue surface is tensile at the instant of failure as predicted by Mohr-Coulomb law, which is referred to as the peeling stress, all stress components and elements of the material matrix are reduced to zero in its direction. In this case, the material matrix is updated to
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However, if the normal stress perpendicular to the glue surface is compressive at the instant of failure as predicted by Mohr-Coulomb law, then only the shear stress and the corresponding the shear modulus are set to zero. In this case, the material matrix is updated to
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If the crack is perpendicular to the glue surface, the material matrix with principal axes normal and parallel to the cracking direction becomes
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The material matrix, 
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, in the coordinate system of crack must also be transformed into to the form in the local coordinate system.

3.2 Material model for concrete
Strength envelope of concrete

The five-parameter model of Guo [8] is used to obtain the strength of concrete under multi-axial stresses. The strength envelope of concrete is calculated from the following equation
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where 
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 is the ratio of the octahedral shear stress to the uniaxial compressive strength; 
[image: image51.wmf]'

c

oct

0

f

s

=

s

 is the ratio of the octahedral normal stress to the uniaxial compressive strength. The octahedral shear stress and the octahedral normal stress are given as follows.
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In order to estimate strength envelop, five-parameter a, b, ct, cc, and d are defined using : (1) the uniaxial compressive strength; (2) the uniaxial tensile strength; (3) the strength under equal biaxial compression; (4) the strength under equal triaxial tension; and (5) the high compression stress point on the compressive meridian. In this study, the uniaxial tensile strength is taken from the equation proposed by Rapheal [9] as
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Equation (24) is in unit of kg/cm2. The strength under equal biaxial compression is using 1.16
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; the strength under equal triaxial tension is equal to uniaxial tensile strength; and the high compression stress point on the compressive meridian is point of (
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Tension of concrete

In the present study, the stress-strain relationship under tension is assumed linear with initial elastic modulus of concrete up to the strength envelope of concrete. After crack occurs, the stress is reduced to a value determined by the tension stiffening parameter, crack direction is then fixed for all subsequent loading, and the material matrix is assumed to be orthotropic with Poisson’s effect playing no role.
Tension Stiffening

The “tension stiffening” has to be incorporated into a cracking model to correctly simulate the load carrying capacity of a reinforced member in tension. Many investigators [10,11] have proposed various stress-strain curves of concrete after cracked. The stress-strain relation used is shown in Fig. 4 [6]. When a crack occurs, the stress normal to the crack can be obtained as follow:
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and the secant modulus 
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Where 
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 and 
[image: image62.wmf]m

e

 are tension stiffening parameters, and 
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 is current strain in i direction. In the present study, the value of 
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 determined according to Mphonde’s experimental studies of beams without stirrup [6]. From Mphonde’s test, the value of 
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 is between 0.01 and 0.6. Cracking strain beyond the one represented by parameter 
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, which stress cannot be carried across the cracks. The value of 
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 was assumed constant at 0.002 [6] in this study.
Shear Degradation

After crack occurs, the dowel effect and aggregate interlocking can be incorporated into a continuum model by using equivalent shear stiffness. Test [12] has shown that the primary variable in the shear transfer mechanisms is the crack width. Many investigators reduce a shear modulus of uncracked concrete to simulate dowel action and aggregate interlocking. In the present study, the shear modulus of cracked concrete is assumed to be function of the current principal tensile strain [13]. The shear degradation of cracked concrete can be described as follow


[image: image68.wmf]ï

î

ï

í

ì

³

e

£

e

e

-

=

005

.

0

0

005

.

0

)

005

.

0

1

(

G

25

.

0

G

1

1

1

c






(27)

where G is the shear modulus of uncracked concrete, and 
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 is the tensile strain in the normal to cracked direction. In numerical, 
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 set to 0.001G when 
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 is higher than 0.005. For concrete cracking in both directions, the shear modulus calculated by using equation (27) with reduced 50 percent.
An Equivalent Uniaxial Stress-Strain Relationship

The secant modulus with different stress levels was used to describe the stress-strain relationship under multi-direction stresses. The stress-strain curve (Fig. 5) in compressive is approximated by the following expression proposed by Guo et al. [14]:
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where 
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 denotes the nonlinearity index at current stress state for i principal direction, and xi is the ratio of current strain to corresponding strain at failure stress for i principal direction, which can be described as follows,
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where 
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 is the secant modulus for strength leve, and 
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 is the concrete strength in i direction under multi-direction stresses.

Using simple algebra, equation (28) can be solved to obtain the actual secant modulus 
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. Substituting equation (29) into equation (28), we obtain
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Set
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and its derivative
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Solve equation (30) using Newton-Raphson method. Let the initial value r1 equal to 1 at first iteration step. After the k+1th iteration, the value of 
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 can be determined as follows,
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Iteration will be terminated when 
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 is smaller than a prescribed tolerance. The secant modulus with different stress levels has been found as follows;
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where 
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= initial modulus. The value of 
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 in this study is taken from the equation proposed by Massicotee et al. [15] as
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where concrete strength 
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 ranging from 214 kg/cm2 to 846 kg/cm2.

After finding the secant modulus, the orthotropic constitutive law can be established by using total stress-strain relationship. This method describes the restrictions on the ascending portion of the stress-strain curve under proportional loading. For descending portion of stress-strain curve, we assume linear relation until failure, which defined stress reducing 0.85 times strength and strain increasing 1.75 times strain corresponding with strength.

The stress-strain curve is decided by the failure mode of concrete. The modes of failure are divided in two types, namely crushing or cracking, which is dominated tensile or compressive stress and proportion of stress. The ratio of tensile stress to compressive stress dominate the mode of failure when the concrete subject to combination tension and compression. The tensile parameter,
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, is proposed to defined failure modes and establish appropriate equivalent uniaxial stress-strain relationships. The tensile parameter is given by
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where 
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The cracking will be occur when tensile parameter greater than critical value, 
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, which is range from 0.05 to 0.09 base on experimental data at Tsinghua University. If tensile parameter small than critical value 
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a

 the crushing mode will be occurs. In this study, the tensile parameter critical value is set to 0.05. The parameter of equivalent uniaxial stress strain relationships can be determined as follow [14].
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The tensile parameter
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 and proportion of stress decide the value of parameter A and n. The parameter A and n are show in Table 1, which parameter A calculates as following equation under triaxial compression and 
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Constitutive Relationship of Concrete

To simulate the stress-strain relationship of concrete under triaxial loading, the orthotropic model [14] is adopted in this study. The orthotropic direction coincides with principal stress direction for uncracked concrete and these conditions are parallel and normal to the cracks for the cracked concrete. The stress-strain relations are first defined in the axes of orthotropic direction and are then transformed to the global coordinate system by a transformation matrix. The local material stiffness in uncrack concrete is form as 
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where 
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 are secant modulus of concrete in principal direction 1,2 and 3, respectively; 
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 are shear modulus for planes parallel to the planes 1-2, 2-3, and 1-3, respectively; and
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In this study, a smeared cracked model was adopted for describing the behavior of cracked concrete. The material axes are fixed after formation of the initial crack. In this model the initiation of a cracking process at any Gauss point happens when the concrete stress reaches strength envelope of concrete. After single crack take place, the concrete is treated as an orthotropic material with principal axes normal and parallel to the cracking direction. The Poisson’s ratio was neglected in principal direction. Thus, the concrete material stiffness matrix with respect to the cracking direction can be given by
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where 
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 is the secant modulus for crack direction and calculated by using tension stiffening, 
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 are the secant modulus for uncracked concrete, 
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 is shear degradation modulus, which can be calculated by using equation (27). When the second crack develops in the orthogonal direction for 
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 reaching strength envelope of concrete, the material matrix should be modified as
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where 
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 and 
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 are the secant modulus for cracked direction.

Similarly, the material matrix for cracked concrete in the coordinate system of crack must also be transformed into to the form in the global coordinate system.
3.3 Material model for reinforcing steel bar

A one-dimensional elastic-plastic material model in both compression and tension is adopted for describing the behavior of the internal flexural and shear steel reinforcements. The yielding is determined by the uniaxial yield stress 
[image: image127.wmf]y

s

 and further loading results in the elastic-plastic behavior with linear strain hardening.

3.4 Material model for steel plate

An elastic-perfectly-plastic material model in both compression and tension is adopted in this study to simulate the behavior of the external bonded plate. There are two types of theory dealing with plastic material, namely, the deformation theory and incremental theory of plasticity. The deformation and incremental theories of plasticity use the secant and tangent modulus, respectively. In the present study, the deformation theory is adopted because it is consistent with other material models that use secant modulus.
Constitutive law for the deformation theory of plasticity

The deformation theory is based on the following postulates: (1) the proportional between the mean stress and the mean strain is assumed identical to the case of the corresponding elastic law of volume change. (2) the principal direction of the stress is identical to that of strain. (3) the effective stress 
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 and the effective strain 
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 have a one-to-one mapping relation. According to above postulates, the constitutive law of the deformation theory can be expressed as [16]
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where 
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 is defined as effective Poisson’s ratio for the state of plasticity, which is expressed as 
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Where, 
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Note that the relation 
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 is satisfied in the elastic range. Under uniaxial tensile, 
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, respectively. For this reason, the effective stress 
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 can be related to the stress-strain relationship of material under uniaxial tension test.
Iterative method to find material matrix for deformation theory

The constitutive law for deformation theory was found by iterative method. The iterative steps are given as follows. 

Step 1 Appling total loads on the nodes of structure, the stress and strain of the structure can be calculated.

Step 2 Checking whether the effective stress exceeds the yielding stress or not. If the effective stress does not exceed the yielding stress, there will no iteration required in the analysis. On the contrary, iteration will be needed.

Step 3 According to the state of strain of the proceeding step, the effect secant modulus and the effective Poisson’s ratio are calculated by using equation (35).

Step 4 Construct the material matrix for plastic state by using equation (34).

Step 5 Repeats step 2 to step 4 until convergence is reached.

4 Solution Convergence Criteria

A convergence criterion based on the norm of the nodal displacement is selected in this study. The norm of the nodal displacement convergence criterion is selected as follow
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Where, 
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 is the nodal displacement. Iteration will be terminated when 
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 is smaller then 0.7% in this study.

5 Numerical Example and Program Verification

The ability of the numerical model developed in this study to predict the structural response of a reinforced concrete structure externally strengthened with plates of sufficient strength and rigidity is verified. First, we plan to verify that the results of two nodes truss element are comparable with the theory of plastic. Second, we will check the deformation theory of plasticity. Third, the interface finite element was verified by comparison of analytic solution. Finally, RC structures numerical examples are compared with experimental data.
5.1 Verification of two nodes truss element

This section intends to compare the results of two nodes truss element with the theory of plastic. The bilinear stress-strain relation of truss element is adopted. The problem of verification is shown in Fig 6. The same material properties of all elements are assumed as follow: initial elasticity modulus, 
[image: image148.wmf]6

s

10

04

.

2

E

´

=



 EMBED Equation.3  [image: image149.wmf]2

cm

kg

; tangential modulus after yielding, 
[image: image150.wmf]102000

20

E

E

s

sp

=

=



 EMBED Equation.3  [image: image151.wmf]2

cm

kg

; yielding stress, 
[image: image152.wmf]2800

y

=

s



 EMBED Equation.3  [image: image153.wmf]2

cm

kg

; and cross section area, 
[image: image154.wmf]10

A

=



 EMBED Equation.3  [image: image155.wmf]2

cm

.

The load-deflection curve of this problem is shown in Fig 6. Fig. 6 shows the comparison between the numerical and the plasticity theory, and close agreement is indicated. It confirms that the program is correctness for truss element.

5.2 Verification of the deformation theory of plasticity

This section tends to verify the deformation theory of plasticity for external plates. A perfect elastic-plastic material model in both compression and tension is assumed. The simple support beam is considered in this verification as shown in Fig 7. The material properties of this beam are assumed as follows: elasticity modulus, 
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Fig. 7 shows the load-deflection curve for the middle point of the beam under four-point loading, where the comparisons of the two-dimensional [5] and three-dimensional finite element solutions are given, and close agreement is achieved. As can be seen in Fig. 7, the elastic stiffness agrees well with that calculated by using linear elastic beam theory. The loads for the first yielding and ultimate are nearly the same as those obtained by plastic theory, respectively. Figs. 8 show the distribution of strain and stress along the height from the bottom at load of 17.4 ton, respectively. As shown in Fig. 8, the distribution of strain and stress also agree well with those by plastic theory. It indicates that the three-dimensional program is suitable for the deformation theory of plasticity.

5.3 Verification of three-dimensional interface element

The simply supported beam, as show in Fig. 9, was considered in verifying the correctness of the thin interface three-dimensional element by comparison of analytic solution [17] and two-dimension finite element solution [6]. The material properties of this beam was assumed as follows: for concrete, Ec=280624 kg/cm2,
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; for glue, Eg=3000 kg/cm2, 
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; and for plate, Es=2040000 kg/cm2, 
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The interface stress distribution along the glue line of the beam is shown in Fig. 10. Fig. 10 shows the stress concentration in the plate curtailment, and shows the comparison of the finite element solution and the Roberts’s analytic solution, where close agreement is indicated. Hence, the 3D thin interface element is qualified for the finite element analysis.

5.4 Verification of RC beams with deficient shear strength strengthened by plates

5.4.1 Beam Detail and Material Parameter

Three of the beams tested by Sharif et al. are selected for verifying the present numerical model. The beams are referred to as DB1, DB2, and DB3, the experimental details and material properties of which can be found in their paper [17]. Fig. 11 presents an overall summary of the geometry of the beams studied. Beam DB1 is an ordinary under-reinforced concrete beam with no external steel plate reinforcement and shear reinforcement to cause a sudden shear type failure. Beams DB2 and DB3 are similar to DB1 except that different arrangement of steel plates is considered, namely, jacket for DB2 and wings for DB3. In all beams the epoxy glue and steel plate thickness are fixed to be 1.5mm. The material properties used in the model are identical to those adopted reported in the experimental investigation. The parameters used in the finite element analysis are listed in Table 2.

5.4.2 Results and Discussions

Load-deflection curve and failure mode

Fig. 12 shows the comparison load-deflection curves for beams with different strengthened. It can be observed that Beam DB1 with no shear reinforcement and Beam DB3 with strengthened by wing display sudden failure, where Beams DB1 and DB3 are shear and separation failure, respectively. Beam DB2 with strengthened by jacket presents a ductile manner, which is failure in flexural in constant moment region. At the same load level, the displacement for DB2 by experiment is slightly more than that by finite element analysis. Because the beam take preloading caused crack before strengthening so the load deflection curve not observe initial crack by experiment after strengthening, but that by finite element predicted is observed. Beam DB2 can be much extra loading after yielding because it is much strain hardening. In Fig. 13, shadows represent separation between the concrete and plates under the ultimate load. Although the beam strengthened by jacket display separation in lateral side, it still can reach the flexural strength. This is not true for the beam strengthened by wing. The above result shows that the beam strengthened by jacket has better performance than that by wing. 
Ultimate load

Table 3 shows the comparison between the numerical results and the reported experimental value of the ultimate loads for the various beams under study. As can be seen, the ultimate load obtained by the finite element analysis does not agree well with those obtained by experiments. From load-deflection curve of experiment in Fig. 12, the strain hardening was happened in the tensile bar. The yielding stress report by Sharif [17] may be determined by offset method. So, the ultimate load reported by Sharif [17] is higher than that calculated by using ACI code and finite element method. According to the ACI code [18], the shear strength for Beam DB1 with no shear reinforcement is 2562 kg, and the flexural strength for Beam DB2 with strengthened by jacket is 4156 kg. The ultimate flexural load predicted by the finite element method agrees with calculated by ACI code, and the ultimate shear loads predicted by the finite element is slightly higher than that by ACI code. Because the internal steel bar was modeled in elastic plastic with linear strain hardening after yielding (E2=E1/100), but it is assumed in elastic-perfectly-plastic behavior in ACI code calculated. Hence, the ultimate load predicted by ACI code is lower than the one predicted by finite element method.

Stress

Fig. 14 shows the normal stress distribution in the internal steel bar for Beams DB1, DB2 and DB3, respectively, at the ultimate load conditions. As shown in Fig. 14, the internal steel bars of Beam DB2 yield in constant moment region, indicating flexure failure, and both Beams DB1 and DB3 remain elastic behavior. Also, the normal stress of Beams DB1 and DB3 is higher than Beam DB2 in shear span region. It indicates that there is more force transferred from the internal steel bar to the external plate in Beam DB2 than in Beam DB3.

Fig. 15 and 16 show the interface peeling and shear stresses in side of upper (point B) and lower (point A) for Beams DB2 and DB3, respectively, at ultimate load conditions predicted by the finite element method. In Figs. 15 and 16, the value of interface stress for sampling Gauss points is higher than the value calculated by Mohr-Coulomb fracture criterion, indicating a plate separation in this region.

5.5 Verification of RC cap-beams strengthened by plates

5.5.1 Cap-Beam Detail and Material Parameter

Two of the cap-beams tested [7] were selected to verify finite element model. The cap-beams are referred as CB1 and CB3, the experimental details and material properties describe as reference. Figs. 17, 18 and 19 present an overall summary of the geometry and arrangement of the strengthening cap-beams studies. The material properties and finite element model used parameters as shown in Table 4. Due to symmetry, the quarter of cap-beam was modeled as Fig. 20.

5.5.2 Results and discussions

Ultimate load

Table 5 shows the comparison between the numerical results and experimental values of the ultimate loads for various cap-beams, and the finite element results agree well with those obtained experimentally. 

Load-deflection curve and distribution of deflection

Fig. 21 shows comparisons between the numerical and experimental load-deflection curves, where deflection is the one at the position of 250 cm measured from the center of side of cap-beam. Fig. 22 show comparisons between the numerical and experimental distribution of deflections along the side of the cap-beam under P = 600 ton. As shown in these Figs., the load-deflection curve and distribution obtained from the finite element method agrees well with that from experimental data. 
Stress

As shown in Figs. 23, the internal steel bars yield in the center of the cap-beam to indicate flexure failure. Besides, the stress distribution in the main steel bar obtained from the present study agrees with that from experimental data except in the region near the end of cap-beam.
In Figs. 24 and 25, the shadow regions represent separation between the concrete and strengthen plates under P = 1000 ton and the ultimate loading level, respectively. These regions represent the values of the interface stress for sampling Gauss points are higher than those calculated by Mohr-Coulomb fracture criterion. From Figs. 21, 24 and 25, it can be seen that although the cap-beam has displayed partial separation in both lateral and bottom sides, it can still reach the flexural strength, and the area of separation would not extend in the bottom for cap beam strengthened by this method.
6 Conclusions

In the present study, the 3D nonlinear behaviors of RC structures strengthened by external steel plates have been analyzed. Some important conclusions can be drawn base on the analysis results:

(1) The three-dimensional thin element for simulating the behavior of concrete / epoxy / steel plate interface has been verified by comparison of the analytic solutions of Robert’s formula and the two-dimensional model of Ziraba’s.

(2) By comparing the three-dimensional finite element solutions with the plastic theory, the internal steel bar modeled using truss elements and the external steel plates using the deformation theory of plasticity have been confirmed.

(3) The interface element can predict the shear and normal stress concentration, and the separation after the peak shear and normal stress being exceeded the Mohr-Coulomb with maximum tensile stress criterion.

(4) Three-dimensional nonlinear finite element method can capture the essential characteristic of behavior of RC structures strengthened by external steel plates up to failure.

(5) As for strengthening of shear RC beams by external bonding of steel plates, the beam strengthened by jacket has been separated in lateral side. They still reach their flexural strength, while beams strengthened by wings cannot. It shows that beams strengthened by jacket have better performance than beams strengthened by wing.

(6) For the cap-beams externally strengthened with plates on two laterally sides and compressive face, although the plated cap-beam has been debond between concrete and plates at side and bottom but the plate of the end of plated cap-beam bond very well until the plated cap-beam failure. Since, the plate at the end of cap-beam provides some kinds of anchorage, the cap-beam still can takes extra loading, and can behaves in good composite action. It seems a good strengthen method.
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Table 1 Parameter of equivalent uniaxial stress-strain relationships
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Table 2 Materials parameters for Sharif’s beam analysis
	Beam
	Concrete
	Internal steel bar
	Plate
	Epoxy
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Table 3 Ultimate loads of Sharif’s beam study

	Beam designation
	Arrangement


	Ultimate load (kg)

	
	
	Finite element predict
	Experiment
	ACI code

	DB1
	No strengthened
	2970
	3465
	Shear strength =2562 kg

Flexural strength=4156 kg

	DB2
	Jacket
	4464
	5749
	

	DB3
	Wing
	3744
	4240
	


Table 4 Materials parameters for cap-beams analysis
	Beam
	Concrete
	Internal steel bar
	Plate
	Epoxy
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Table 5 Ultimate loads of cap-beams study

	Beam designation
	Ultimate load (ton)

	
	Finite element predict
	Experiment

	CB1
	731.9
	739.0

	CB3
	1093
	1071.0
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