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 ABSTRACT 

This paper presents the nonlinear finite element modeling of the global behavior for RC beam 
strengthened by externally epoxy bonded steel plates up to failure.  In addition to the consideration of 
nonlinear behavior and cracking of concrete, the model involves interface element to capture not only 
the shear and normal stress concentration at the plate curtailment, but also the separation due to the 
exceeded peak shear and normal stress.  The internal steel bar using truss element and the external 
steel plate using deformation theory of plastic have been confirmed by compare finite element solution 
with plastic theory.  The proposed finite element solutions result in close correlation with experimental 
data available for RC beams strengthened by epoxy bonded steel plates with different thickness. 

Keywords : Nonlinear finite element, Interface element, Strengthened RC beam.

1.  INTRODUCTION 

RC structure must be repaired or strengthened when 
the behavior of RC structures is found to be inadequate.  
The inadequacy may be due to inferior materials, design, 
or constructional fault.  Deteriorated RC structures 
need to be repaired to extend their useful service life.  
Strengthening and repair of RC members by steel plates 
externally bonded to the tension face of the members is 
a common technique that has been studied by many 
investigators [1,2], and many structures have been 
successfully strengthened in flexure using this 
technique [3,4].  The successful strengthened structure 
must remain full composite action until failure in 
ductile manner.  The peak shear and normal stress will 
be developed at plate curtailment under loading, the 
plate separation occurs immediately if the peak shear 
and normal stress exceeds the strength of interface.  
Many researches [5,6] have analyzed the plated RC 
beam using strength of material approach.  However, 
the linear behavior of all component materials is 
assumed in above approach. 

In this present study, the nonlinear finite element 
modeling of the global behavior of the externally 
reinforced RC beam up to failure is developed.  The 
model involves interface element to capture the 
characteristics of the interface between the concrete and 
external plates. 

 
 
 

 
 

2.  MATERIAL MODEL AND CONSTITUTIVE 
RELATIONSHIP 

2.1  Concrete 

Tension 
In the present study, the stress-strain relationship 

under tension is assumed linear with initial elastic 
modulus of concrete up to the maximum tensile stress f′t.  
After crack occurs, the stress is reduced to a value 
determined by the tension stiffening parameter.  The 
value of f′t in this study is taken from the equation 
proposed by Raphael [7] as 

 3/2)(7.0 ct ff ′=′  (1) 

Equation (1) is in unit of kg/cm2. 

Tension Stiffening 
The “tension stiffening” has to be incorporated into a 

cracking model to correctly simulate the load carrying 
capacity of a reinforced member in tension.  Many 
investigators [8,9] have proposed various stress-strain 
curves of concrete after cracked.  The stress-strain 
relation used is shown in Fig. 1 [10].  When a crack 
occurs, the stress normal to the crack can be obtained as 
follows: 
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m

f
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 (2) 

and the secant modulus Ei is 
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where α and εm are tension stiffening parameters, and εi 
is current strain in i direction. 

The tension stiffening parameter α was calibrated 
against compressive strength f′c.  In the present study, 
the value of α  was determined according to Mphonde’s 
experimental studies of beams without stirrups [11].  
Cracking strain beyond the one represented by parameter 
εm, which stress can not be carried across the cracks.  
The value of εm was assumed constant at 0.002 in this 
study. 

Shear Degradation 
After crack occurs, the dowel effect and aggregate 

interlocking can be incorporated into a continuum model 
by using equivalent shear stiffness.  Test [12] has shown 
that the primary variable in the shear transfer 
mechanisms is the crack width.  Many investigators 
reduce a shear modulus of uncracked concrete to simulate 
dowel action and aggregate interlocking.  In the present 
study, the shear modulus of cracked concrete is assumed 
to be function of the current principal tensile strain [13].  
The shear degradation of cracked concrete can be 
described as follow 
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where G is the shear modulus of uncracked concrete, and 
ε1 is the tensile strain in the normal to cracked direction.  
In numerical, Gc set to 0.001G when ε1 is higher than 
0.005.  For concrete cracking in both directions, the 
shear modulus calculated by using Eq. (4) with reduced 
50 percent. 

Biaxial Concrete Strength 
Under combination of biaxial loading, concrete 

strength and stress-strain behavior is different from that 
under uniaxial loading conditions.  Many investigators 
have proposed the mechanical properties of concrete 
under biaxial loading.  In this study, the concrete 
strength is determined using the failure envelope 
proposed by Kupfer and Gerstle [14]. 

 
Fig. 1 Tension stiffening behavior of cracked 

concrete 

An Equivalent Uniaxial Stress-Strain Relationship 

The secant modulus with different stress levels will be 
used to describe the stress-strain relationship under multi- 
direction stresses.  The stress-strain curve (Fig. 2) in 
compressive is approximated by the following expression 
proposed by Guo et al. [15]: 

 2 32.2 1.4 0.2i i i ix x xβ = − +  (5) 

where 
if

i
i σ

σ
=β  denotes the nonlinearity index for 

current stress state for i principal direction, and xi is the 
ratio of current strain to corresponding strain at failure 
stress for i principal direction, which can be described 
as follows, 
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where Eis = σi / εi is the secant modulus of current stress 
level; Eif = σif / εip is the secant modulus for strength level; 
and σif is concrete strength in i direction under multi- 
direction stresses. 
 

 
Fig. 2  Compression behavior of concrete 

Using simple algebra, Eq. (5) can be solved to obtain 
the actual secant modulus Eis for i principal direction.  
The expression for Eis contains the actual stress in terms 
of the nonlinearity index βi.  Substituting Eq. (6) into Eq. 
(5), we obtain 
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Set 

 isif EEr /=  (8) 

 2 2 3( ) 2.2 1.4 0.2 1if r r r r= − β + β −  (9) 

and its derivative 

 2 2( ) 2.2 2.8 0.6i i
dff r r r
dr

′ = = − β + β  (10) 

Solve Eq. (7) using Newton-Raphson method.  Let 
the initial value r1 equal to 1 at first iteration step.  After 
the k + 1th iteration, the value of rk + 1 can be determined 
as follows, 
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Iteration will be terminated when | rk + 1 − rk | is smaller than 
a prescribed tolerance.  The secant modulus with 
different stress levels has been found as follows; 
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where Ei0 = initial modulus.  The value of Ei0 in this 
study is taken from the equation proposed by ACI 
committee 363 [16] and Massicotee et al., [17] as 

 0 10600 70336cE f ′= +  (13) 

where concrete strength f′c ranging from 214kg/cm2 to 
846kg/cm2. 

After finding the secant modulus, the orthotropic 
constitutive law can be established by using total stress- 
strain relationship.  This method describes the 
restrictions on the ascending portion of the stress-strain 
curve under proportional loading.  For descending 
portion of stress-strain curve, we assume linear relation 
until failure, which defined stress reducing 0.85 times 
strength and strain increasing 1.75 times strain 
corresponding with strength.  After crack occurs, the 
secant modulus was determined according to tension 
stiffening effect in the direction perpendicular to the 
crack.  For direction parallel to the crack as subjected to 
tension, it hardly has influence on the secant modulus 
with assuming linearity.  Beside, for direction parallel to 
the crack as subjected to compression, the softened 
concrete phenomenon would happen. 

The Softened Concrete in Biaxial Tension- 
Compression 

After cracking, the stress-strain relationship for biaxial 
tension-compression will be considered.  For tension 
along perpendicular cracking direction, the “tension 
stiffening” effect may occur which has been explained 
previously.  For compression along parallel cracking 
direction, the stress-strain relationship is the softening of 
peak stress in comparison to the standard cylinder.  
Many investigators [18~20] tested panels subjected to 
biaxial stresses, and confirmed that the compressive 
strength of reinforced concrete can be softened by the 
tensile strain in the perpendicular direction.  In the 
present study, the softening coefficient is approximated 
by the following expression proposed by Belarbi and Hsu 
[20].  

 
0.9

1 400 r

ξ =
+ ε

 (14) 

where εr is the tensile strain perpendicular to the cracking 
direction. 

The stress-strain relation for compression along the 
direction parallel to cracking can be modified by 
replacing f′c with ξ f′c and ε0 with ξε0 in Eq. (5). 

Constitutive Relationship of Concrete 

To simulate the stress state of concrete under biaxial 
loading, the orthotropic model [21] is adopted in this 
study.  The orthotropic direction coincides with 
principal stress direction for uncracked concrete and 
these conditions are parallel and normal to the cracks 
for the cracked concrete.  The stress-strain relations 
are first defined in the axes of orthotropic direction and 
are then transformed to the global coordinate system by 
a rotation transformation.  The local material stiffness 
with the form as 
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where E1 and E2 = secant modulus in principal direction 1 
and 2, respectively; and ν = Poisson’s ratio.  When the 
biaxial compressive stress exceeds Kupfer’s failure 
envelope, concrete enter the region of strain softening.  
In this region, failure occurs by crushing of concrete 
when the principal compressive strain exceeds a limit 
value εiu. 

In this study, a smeared cracked model was adopted 
for describing the behavior of cracked concrete.  The 
material axes are fixed after formation of the initial crack.  
It is called the “fixed cracked model”.  In this model the 
initiation of a cracking process at any Gauss point 
happens when the concrete stress reaches the equivalent 
tensile strength.  In the modeling of cracking of concrete, 
the following are considered: (1) tension stiffening effect, 
(2) shear degradation, and (3) concrete softening effect.  
After single crack take place, the concrete is treated as an 
orthotropic material with principal axes normal and 
parallel to the cracking direction.  The Poisson’s ratio 
was neglected.  Thus, the concrete material stiffness 
matrix with respect to the cracking direction can be given 
by 
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where E1 is the secant modulus for crack direction, E2 is 
the secant modulus for uncracked, and Gc

12 is shear 
degradation modulus. 

When the second crack develops in the orthogonal 
direction for σ2 reaching equivalent tensile strength, the 
material matrix should be modified as 
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where E1 and E2 are the secant modulus for cracked 
direction. 
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Similarly, the material matrix for cracked concrete in 
the coordinate system of crack must also be transformed 
into to the form in the global coordinate system. 

2.2  Reinforcing Steel Bar 

A one-dimensional elastic-plastic material model in 
both compression and tension is adopted for describing 
the behavior of the internal flexural and shear steel 
reinforcements.  The yielding is determined by the 
uniaxial yield stress σy and further loading results in the 
elastic-plastic behavior with linear strain hardening.  
The secant modulus sE  before yielding is 

 ss EE =  (18) 
and after yielding is 

 
s

s
s

fE
ε

=  (19) 

where 
 )( ysspys Ef ε−ε+σ=  (20) 

for tensile, and 

 )( ysspys Ef ε+ε+σ−=  (21) 

for compression, where Esp denote the strain hardening 
modulus. 

2.3  External Steel Plate 
A two-dimensional elastic-perfectly-plastic material 

model in both compression and tension is adopted in this 
study to simulate the behavior of the external bonded 
plate.  There are two types of theory dealing with plastic 
material, namely, the deformation theory of plasticity and 
incremental theory of plasticity.  The deformation and 
incremental theories of plasticity use the secant and 
tangent modulus, respectively.  In the present study, the 
deformation theory is adopted because it is consistent 
with other material models that use secant modulus.  
The procedure of the constitutive law of deformation 
theory can be found in Ref. [22]. 

2.4  Concrete / Glue / Plate Interface 
The interface material is modeled by a linear- 

elastic-fracture relationship (Fig. 3).  Prior to the 
cracking of the interface, the material is assumed to be 
isotropic.  Due to its special thin geometry, the interface 
element can crack only along the glue line or 
perpendicular to it [10].  Cracks perpendicular or along 
the glue line will occur as soon as the corresponding  
 
 
 
 
 
 
 

Fig. 3 Material behavior of the interface element in 
tension and shear 

normal stress reaches the tensile strength of the interface.  
After cracking, the elasticity modulus in the 
corresponding direction is set to zero.  The Poisson’s 
ratio was neglected.  The shear modulus reduces to 0.25 
times of uncracked value [10].  If the crack is 
perpendicular to the glue line, the updated material 
matrix for the interface becomes 
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The interface could also crack parallel the glue line under 
combined shear and normal stresses, which has been 
shown in study [23] to follow a Mohr-Coulomb type 
fracture criterion given by 

 φσ−=τ tanc  (23) 

where cohesion for a concrete / glue / plate interface 
ranges from 49kg/cm2 to 97kg/cm2 with φ = 28° for room 
temperature.  The wide range of cohesion c can be 
attributed to the variation in surface preparation and 
properties of the adhesive and concrete.  If the normal 
stress perpendicular to the glue line is tensile at the 
instant of failure as predicted by Mohr-Coulomb law, 
which is referred to as the peeling stress, all stress 
components and elements of the material matrix are 
reduced to zero.  However, if the normal stress 
perpendicular to the glue line is compressive at the 
instant of failure as predicted by Mohr-Coulomb law, 
then only the shear stress and the corresponding the shear 
modulus are set to zero.  In this case, the material matrix 
is updated to 
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3.  FINITE ELEMENT MODEL AND SOLUTION 
CONVERGENCE CRITERIA 

3.1  Finite Element Model 
Concrete and external plates are presented by eight 

nodes isoparameter finite element as shown in Fig. 4.  
Numerical integration for any element was carried out 
using Gauss-integration technique over nine sampling 
points.  At each iteration of any load, the material 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Finite element model 

σ

sε  nε  

tf  snτ  

snγ  

maxτ  

P/2 
Concrete Reinforcement  

Glue interface External plate 



 

The Chinese Journal of Mechanics-Series A, Vol. 19, No. 4, December 2003 413 

matrix at every sampling point of the concrete and 
external are updated and modified to take into account 
the material nonlinearities as described previously.  
The internal steel including the main tensile and 
compressive steel as well as stirrups are modeled using 
two-node truss element (Fig. 4).  Concrete / glue / plate 
interface element model is using six-node thin interface 
element (Fig. 4).  The six-node thin interface element 
proposed by Ziraba and Baluch [10]. 

3.2  Solution Convergence Criteria 
A convergence criterion based on the norm of the 

nodal displacement is selected in this study.  The norm 
of the nodal displacement convergence criterion is 
selected as follow 

 
||max

||max||max 1

i

ii

v
vv −

=λ +  (25) 

where vi is the nodal displacement.  Iteration will be 
terminated when λ is smaller then 0.5%. 

4.  NUMERICAL EXAMPLE AND 
VERIFICATION 

The ability of the numerical model developed in this 
study to predict the structural response of a reinforced 
concrete beam externally strengthened by plates with 
sufficient strength and rigidity is verified.  First, the 
verification of the constitutive model for plane concrete 
is presented.  Second, we plan to verify that the results 
of two nodes truss element are comparable with the 
theory of plastic.  Third, we will check the deformation 
theory of plasticity for external plates.  Finally, the 
numerical results of a reinforced concrete beam 
externally strengthened with plates are compared with 
experimental data available from Ref. [24]. 

4.1 Verification of Constitutive Model for Plane 
Concrete 

The comparison results of stress-strain relationship 
between the analysis predicted and the test results 
provided by Kupfer [25] and Tasuji [26] are shown in 
Figs. 5 to 7. Figures 5 shows the uniaxial compression, 
Fig. 6 and 7 show the biaxial compression under stress 
ratio of σ2 / σ3 = 0.5 and σ2 / σ3 = 1, respectively.  In all 
case, the prediction of the stress-strain relationships of 
concrete was compared well with experimental average 
data provided by Kupfer and Tasuji. 

4.2  Verification of Two Nodes Truss Element 

This section intends to compare the results of two 
nodes truss element with the theory of plastic.  The 
bilinear stress-strain relation of truss element is adopted.  
The same material properties of all elements are assumed 
as follow: initial elasticity modulus, Es = 2.04 × 
106kg/cm2; tangential modulus after yielding, Esp = Es / 20 
= 102000kg/cm2; yielding stress, σy = 2800kg/cm2; and 
cross section area, A = 10cm2.  The load-deflection curve  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Stress-strain characteristics under uniaxial 

compression 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Stress-strain characteristics under biaxial 

compression when σ2 / σ3 = 0.5 

 
 

 
 
 
 
 
 
 

 
 
 
 

Fig. 7 Stress-strain characteristics under biaxial 
compression when σ2 / σ3 = 1 

of this problem is shown in Fig 8. Figure 8 shows the 
comparison between the numerical and the plasticity 
theory, and close agreement is indicated.  It confirms 
that the program is correctness for truss element. 

4.3 Verification of the Deformation Theory of 
Plasticity 

This section tends to verify the deformation theory of 
plasticity for external plates.  An elastic-perfectly- 
plastic material model in both compression and tension is 
assumed.  The simple support beam is considered in this 
verification as shown in Fig 9.  Eight nodes element 
is used to analyze this simple beam.  The material 
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Fig. 8 Load-deflection curve to verify truss 
element 

properties of this beam are assumed as follow: elasticity 
modulus, Es = 2.04 × 106kg/cm2; yielding stress, σy = 
2800kg/cm2; and Poisson’s ratio, ν = 0.3. 

Figure 9 shows the middle deflection of simple beams 
under four points loading.  As shown in Fig. 9, the 
elastic stiffness agreed well with that from linear elastic 
beam theory.  The loads of first yield and ultimate were 
nearly the same as the results by plastic theory.  Figure 
10 shows the distribution of strain and stress along the 
height from bottom at a load of 17.5 ton.  As shown in 
Fig. 10, the distribution of strain and stress agreed well 
with results by plastic theory.  It confirms that the 
program is correct for the deformation theory of plasticity 
for external plate. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 9 Load-deflection curve to verify 
deformation theory 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 10  Stress and strain distribution 

4.4 Verification of Beams Strengthened with Steel 
Plates 

To verify the present numerical model with regard to 
beams strengthened with external steel plate, beams 
tested in Ref. [24] have been selected.  In the following 
section, the beams details and material characteristics 
used in the numerical computations are outlined.  
Comparisons between the numerical and the 
experimental results are made. 

Beam Detail and Material Parameter 

Four of the beams have been selected to examine the 
present numerical model.  The beams are URB1, URB2, 
URB3 and URB4, and the experimental program with 
detail description and material properties can be found in 
Ref. [24].  Figure 11 presents an overall summary of the 
geometry of the beams studies. 

Beam URB1 is an ordinary under-reinforced concrete 
beam with no external steel plate reinforcement and 
sufficient shear reinforcement to ensure a ductile flexural 
type failure.  Beams URB2, URB3 and URB4 are 
similar to URB1 except that a steel plate of 1.5mm, 3mm 
and 5mm reinforced each beam, respectively.  In all 
beams the epoxy glue thickness is fixed at 3mm.  The 
material properties used in the model were identical to 
those reported in the experimental investigation.  The 
finite element used parameter as shown in Table 1.

 

Table 1  Materials of concrete, plate, internal steel bar and epoxy 

Concrete Internal steel bar Plate Epoxy 
 f′c 

(kg/cm2) ν α Yield stress 
(kg/cm2) 

Thickness
(mm) 

σy 
(kg/cm2)

E 
(kg/cm2) ν 

URB1 549 0.189 D10 D08 D06 − 

URB2 549 0.189 1.5 2446 
URB3 843 0.045 3 2681 

URB4 549 

0.2 

0.189 

5400 5000 5000

5 2217 

2040000 0.3 

E = 2842kg/cm2 
ν = 0.16 
φ = 28° 

C = 76kg/cm2 
ft,s = 120kg/cm2 

ft,n = tensile strength 
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o30
100cm 

P 
0

15

30

45

60

75

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Displacement (cm)

Lo
ad

 (t
on

)

FEM

Theory

1.5Py 

10cm 

15cm 

0

5

10

15

20

25

0 1 2 3 4 5
Displacement (cm)

Lo
ad

 (t
on

)

224cm 

P P 
 75cm 

0

3

6

9

12

15

-3000 -2000 -1000 0 1000 2000 3000
Stress (kg/cm2)

H
ei

gh
t f

ro
m

 b
ot

to
m

 (c
m

) Stress : FEM
Stress : Plastic theory

0

3

6

9

12

15
-2000 -1000 0 1000 2000

Strain (10-6)

Strain : FEM



 

The Chinese Journal of Mechanics-Series A, Vol. 19, No. 4, December 2003 415 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11  Detail of RC strengthened beam 

Result and Discussion 

Ultimate load 

Table 2 shows the comparison between numerical and 
reported experimental value of the ultimate loads for the 
various beams under study.  Test results show close 
correlation between ultimate loads based on the finite 
element estimation and those obtained experimentally.  
The flexural capacity of beam URB1 is obtained from the 
strength theory base on the ACI code [27].  No code 
formulations exist presently for predicting ultimate 
capacities of RC beams strengthened with bonded steel 
plates.  In this study, the RC beams strengthened with 
bonded steel plates will be predicted by strain 
compatibility.  The ultimate flexural strength of the 
plated beams can be divided into the unplated RC beam 
and strengthened plate, respectively.  For RC part, 
flexural ultimate strength was calculated by ACI code.  
For strengthened part, assuming the plate stress-strain is 
elastic-perfectly-plastic for tension and compression and 
the glue was neglected contribution.  The predicted and 
experimental ultimate moments are shown and compared 
in Table 2.  The results of Table 2 shows that the 
flexural ultimate strength of plated and unplated beams 
can be predicted satisfactorily by finite element and strain 
compatibility methods.  Because the internal steel bar 
was modeled in elastic plastic with linear strain 
hardening after yielding, and the actual behavior of the 
internal steel bar may be strain hardening, but it is 
assumed in elastic-perfectly-plastic behavior in strain 
compatibility method.  Hence, the ultimate load 
predicted by strain compatibility method is lower than the 
experimental results and the one predicted by finite 
element method. 

Table 2  Ultimate loads of beam study 
Ultimate load (kg) 

Beam 
Plate 

thickness 
(mm) 

Finite 
element Experiment Strain 

compatibility
URB1 − 2886 2864 2763 
URB2 1.5 3980 4077 3833 
URB3 3 5459 5606 5245 
URB4 5 5896 5861 5825 

Load-deflection curve 

Figure 12 shows comparison between the numerical 
and experimental load-deflection curve indicating 
reasonably close agreement. 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

Fig. 12  Load deflection characteristics 

Stress 

Figures 13 and 14 shows the tensile stress distribution 
in the internal steel bar and the external steel plates for 
beams URB2 and URB4 respectively, at ultimate load 
conditions as predicted by the finite element.  Figure 13 
exhibits that both the internal steel bar and the external 
steel plates for beams URB2 are yielded, indicate a 
flexure failure without separation.  As shown in Fig. 14, 
the external steel plates of beam URB4 are yielded, but 
the internal steel bar remains elastic.  Compare Fig. 13 
with Fig. 14, the stress in the internal steel bar near the 
plate curtailment increased when the thickness of plates 
increased.  The tensile force was transferred from the 
external plate to the internal steel bar near the plate 
curtailment when plate was separated at the plate cut off. 

Figure 15 shows the interface stress distribution 
predicted by finite element method and compare the 
analysis results by Roberts [6] in elastic range, and close 
agreement is indicated.  It confirms that the program is 
correctness for interface element. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 13 Normal stresses distribution for URB2 at 

ultimate load 
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Fig. 14 Normal stresses distribution for URB4 at 

ultimate load 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15 Comparison interface stress distribution for 

URB3 at 896kg 

Figures 16 to 18 show the interface normal and shear 
stresses for beams URB2, URB3, and URB4, respectively, 
as predicted by the finite element.  As shown in Fig. 18, 
the value of interface stresses at various load for 
sampling Gauss points near the end of plate was higher 
than the value calculated by Mohr-Coulomb fracture 
criterion to indicate a plate separation in this region.  
The separation length of steel plate at various loading 
was shown in Fig. 19.  On the contrary, the Beams 
URB2 and URB3 are not separation as shown in Figs. 16 
and 17.  Compare Fig. 16 with Fig. 17, the interface 
normal and shear stresses increased when the thickness of 
plates increased. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16 Interface stress distribution for URB2 at 
ultimate load 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17 Interface stress distribution for URB3 at 
ultimate load 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18 Interface stress distribution for URB4 at 
various loads 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19  Separation length for URB4 at various loads 

Effect of interface cohesion c 

In order to study the effect of the interface strength on 
the ultimate failure mechanism of beams bonded with 
thicker plates, the beam URB4 was analyzed by finite 
element method with different magnitudes of interface 
cohesion.  Table 3 presents the ultimate load 
corresponding to different levels of cohesion.  Beyond 
the 76kg/cm2 value of cohesion, the interface is full 
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composite at ultimate load condition and the beam failed 
in flexure-shear mode, and both the internal steel bar and 
the external plates were yielding at ultimate load 
condition.  For values of cohesion lower than 76kg/cm2, 
the beam fail in plate separation, and the internal steel bar 
was not yielding at plate separation.  In order to confirm 
that the interface is full composite at ultimate load 
condition for certain interface cohesion, the beam URB4 
was analyzed by finite element method without interface 
element.  The value 5946kg of ultimate load was 
obtained for the model without interface element.  This 
value is smaller 2.84% than the case for the model with 
interface element with c = 120kg/cm2.  It was affected 
by a reduced depth of the beam due to the absence of the 
3 mm interface layer. 

Table 3 Effect of interface cohesion c on the 
ultimate load for URB4 

Interface cohesion c 
(kg/cm2) 

Ultimate load Pu 
(kg) Failure mode 

40 4038 Plate separation
60 4880 Plate separation
76 5896 Plate separation

120 6120 Flexure 
No interface element 5946 Flexure 

Failure mode and cracking pattern 

Figures 20 and 21 show the concrete cracking pattern 
at various loading for Beam URB2 and URB4, 
respectively.  The cracking in constant moment region 
of Beam URB2 at ultimate loading display extensive 
vertical cracking and near the top of beam, but Beam 
URB4 is not.  Beam URB4 display inclined cracking 
from the region of plate cut off.  Table 4 presents the 
failure mode and states of internal steel bar, external steel 
plate, and interface at ultimate load condition.  For 
beams bonded with thin plates, failure is full composite 
and yielding at both internal steel bar and external steel 
plate.  For beam bonded thicker plates, failure occurs 
with plate separation and without the yielding of the 
external steel plate. 

Table 4  Failure mode of beam study 

Finite element 
Beam 

Internal steel External plate Interface 
Experiment observation

URB1 Yielding 
IYZ = 41.5cm − − Yielding of internal steel

URB2 Yielding 
IYZ = 45.0cm 

Yielding 
EYZ = 76.5cm 

No separation 
SZ = 0cm 

Yielding of both internal
steel and external plate

URB3 Yielding 
IYZ = 45.5cm 

Yielding 
EYZ = 60.5cm 

No separation 
SZ = 0cm 

Yielding of both internal
steel and external plate

URB4 No yielding 
IYZ = 0cm 

yielding 
EYZ = 59.0cm 

Separation 
SZ = 6.6cm 

Yielding of external plate
but not internal steel plate
separation at curtailment

Note : IYZ = length of yielding of internal steel from center line. 
EYZ = length of yielding of external plate from center line. 
SZ = length of separation of epoxy from curtailment of plate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 20  Concrete cracking pattern for Beam URB2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 21  Concrete cracking pattern for Beam URB4 

5.  CONCLUSIONS 

Some important conclusions can be drawn based on 
the study results: 
1. By comparing finite element solution with plastic 

theory, the internal steel bar using truss element and 
the external steel plates using deformation theory of 
plastic have been confirmed. 

2. A nonlinear finite element method to predict response 
of RC beams strengthened by epoxy bonded steel 
plates can capture the essential characteristic of 
flexural behavior up to failure. 

3. The interface element can pick up the shear and 
normal stress concentration at the plate curtailment, 
and also can judge separation if the peak shear and 
normal stress are exceeded. 

4. An under-reinforced RC beam strengthened by 
external steel plate with thinner thickness is failed in a 
manner similar to a typical unplated under-reinforced 
RC beam.  Both the internal steel bar and external 
steel plates are yielded at ultimate load condition.  As 
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thickness of plate increasing, the peak normal and 
shear stress will be increased in the plate curtailment, 
and failure is plate separation if shear and normal 
stress as exceed Mohr-Coulomb type fracture 
criterion. 

5. If the plate separation does not take place, the ultimate 
flexural strength of the plated beams can be predicted 
by strain compatibility, the strength of plated beam is 
the sum of the unplated RC beam and the strengthened 
plate.  For RC part, flexural ultimate strength was 
calculated by ACI code.  For strengthened part, the 
plate stress-strain is assumed as elastic-perfectly- 
plastic for tension and compression and the 
contribution of glue was neglected. 

6. For insufficient interface strength between the 
concrete and external plate, the beam failed in 
separation of plate immediately.  For sufficient 
interface strength, the beam is full composite at 
ultimate load with yielding at both internal and 
external reinforcing. 

7. To avoid separation at the plate curtailment, the peak 
shear and normal stress concentration at the plate 
curtailment must be reduced.  For this purpose, the 
plate must be anchored at the plate curtailment; the 
finite element analysis should extend to three- 
dimensional analysis. 
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